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Pure multiplicative noise-induced stochastic resonance, which appears in an anti-tumor system modulated by
a seasonal external field, is studied by using theoretical analyses of the generalized potential and numerical
simulations. For optimally selected values of the multiplicative noise intensity stochastic resonance is ob-
served, which is manifested by the quasisymmetry of two potential minima. Theoretical results and numerical
simulations are in good quantitative agreement.
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Chemotherapy remains a traditional form of therapy for
most advanced cancers. Immunotherapy, however, is a less
conventional treatment modality. Usually, chemotherapy and
immunotherapy have been regarded as unrelated forms of
therapy, so relatively few researchers have investigated the
relationship between these two therapies. Chemotherapy kills
tumor cells in a special periodic way while immunotherapy
restrains the growth of tumor cells in a more likely linear
way. Recent studies suggested that these various responses of
tumor cells to the treatments, once taken together, imply that
there is an interesting and significant case for combining
chemotherapy and immunotherapy in tumor treatments
�1–4�.

More than ever, cancer research is now an interdiscipli-
nary effort that requires a basic knowledge of commonly
used terms, facts, issues, and concepts. In the past decade,
many studies have focused on the growth law of tumor cells
via dynamics, especially noise dynamics �5–13�. Phase tran-
sition in the tumor growth induced by noises is one of the
most novel fundamental issues in recent years. Another phe-
nomenon, known as stochastic resonance �SR�, shows that
adding noise to a system can sometimes improve its ability
to transfer information. The basic three ingredients of sto-
chastic resonance are a threshold, a noise source, and a weak
input. It is clear that stochastic resonance is a common case
and generic enough to be observable in a large variety of
nonlinear dynamical systems �14,15�, including the occur-
rence of SR in a tumor dynamical system.

The mean field approximation is a conventional theory for
SR, and is originally proposed for symmetrical bistable sys-
tems with an additive noise source �16�. The improvements
of the theory of SR have included monostable systems
�17,18�, asymmetrical systems �19�, and double-noise �mul-
tiplicative and additive noises� systems �20,21�. However, in
all these studies, the systems have an additive noise source
and an independent external field. For a pure multiplicative
noise system, especially for a more complex dynamical sys-
tem, the equations are too complex to be solved simply by
using the mean field approximation. Thus numerical methods

are comparatively convenient options to deal with these
complex dynamical systems �22,23�.

In this Rapid Communication, chemotherapy and immu-
notherapy are joined by an anti-tumor model with three ele-
ments: �1� a fluctuation of growth rate, �2� an immune form,
and �3� a weak seasonal modulability induced by chemo-
therapy. On the basis of the analyses of the stochastic differ-
ential equation and relevant Fokker-Planck equation, we in-
vestigate a new type of SR phenomenon of an anti-tumor
model through both theoretical analyses and numerical com-
putations. We designate this effect as pure multiplicative sto-
chastic resonance �PMSR� to emphasize the role the pure
multiplicative noise may play in inducing a synchronization,
which can be described by the symmetry of the potential
wells. Additionally, a presupposition is also given that SR
has a close relationship with the responses of a tumor to the
treatments.

Lefever and Garay �24� studied the growth of the tumor
under immune surveillance against cancer using the enzyme
dynamics model. The model is,

Normal Cells→
�

X ,

X→
�

2X ,

X + E0→
k1

E→
k2

E0 + P ,

P→
k3

, �1�

in which X, P, E0, and E are cancer cells, dead cancer cells,
immune cells and the compounds of cancer cells and im-
mune cells, respectively. The symbols, �, �, k1, k2, and k3,
are velocity coefficients. This model reveals that normal cells
can transform into cancer cells, and then the cancer cells
reproduce, decline, and die out ultimately. We can simplify
this model to an equivalent single-variable deterministic dy-
namics differential equation �7�,
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dxn

d�
= rnxn�1 −

xn

Kn
� − ��xn� , �2�

where xn is the population of tumor cells, rn is their linear per
capita birth rate, and Kn is the carrying capacity of the envi-
ronment, respectively. ��xn�, defined as ��xn�=�xn

2 / ��2+xn
2�

�7,25�, quantifies the abilities of immune cells to identify and
attack tumor cells. Here � is the immune coefficient and �
gives a measure of the threshold at which the immune sys-
tem is “switched on.” For convenience, we set x=xn /�,
r=rn�, K=Kn /�, t=� /� to obtain a nondimensional form of
Eq. �2�,

dx

dt
= rx�1 −

x

K
� −

�x2

1 + x2 . �3�

Like most species, seasonal growth is a common feature
of tumor cells, especially when they are under a periodic
chemotherapeutic treatment �2�. This means that the growth
rate of tumor cells should have a periodic form, for example,
a cosinoidal form. If considering the environmental fluctua-
tions, we can rewrite the growth rate r in Eq. �3� as
r0+A0 cos��t�+	�t�, where A0 and � represent the drug con-
centration and the frequency of a chemotherapy, respectively.
	�t� is the Gaussian white noises defined as �	�t��=0 and
�	�t�	�t���=2M
�t− t��, in which M is the noise intensity.
The equivalent stochastic differential equation of Eq. �3� can
be generated as,

dx

dt
= r0x�1 −

x

K
� −

�x2

1 + x2 + x�1 −
x

K
�A0 cos��t�

+ x�1 −
x

K
�	�t� . �4�

In the absence of an external field, i.e., A0=0, if setting
f�x�=r0x�1−x /K�−�x2 / �1+x2� and g�x�=x�1−x /K�, one
can obtain the Fokker-Planck equation of Eq. �4� �14,20�,

�P�x,t�
�t

= −
��A�x�P�x,t��

�x
+

�2�B�x�P�x,t��
�x2 �5�

in which

A�x� = f�x� + Mg�x�g��x� ,

B�x� = Mg2�x� . �6�

The stationary probability distribution of the system ob-
tained from Eqs. �5� and �6� is

Pst�x� = N exp	−
Ueff�x�

M

 , �7�

where N is a normalization constant, and the generalized
potential

Ueff�x� =
2�K3

�1 + K2�2�ln��1 + x2

K − x
� + K arctan x�

+ �r0 + M�ln�K − x

x
� +

�K2

1 + K2� 1

K − x
− arctan x�

+ M ln� x2

K
� . �8�

The generalized potential, Ueff�x�, versus the populations
of tumor cells, x, is plotted in Fig. 1 for different noise in-
tensities, M. Obviously, the potential has two stable states,
and its minima are obtained from A�x�−B��x�=0, i.e.,
r0�1−x /K�−�x / �1+x2�−M�1−x /K��1−2x /K�=0. The posi-
tions of the potential minima, x1 and x2, shown in Fig. 1, are
regarded as the inactive state and the active state of tumor
cells, respectively. The generalized potential is an asym-
metrical bistable potential well and its values at x1 and
x2 change with the noise intensity, M. We observe a mini-
mum at a nonzero noise level in Fig. 2 after defining the
difference between the potential at x1 and that at x2 as
�U= 
Ueff�x1�−Ueff�x2�
 and plotting the relationship be-
tween the potential difference, �U, and the noise strength,
M. According to Fig. 2, the multiplicative noise intensity
controls the symmetry of the potential wells. The potential
wells are quasisymmetrical and �U tends to zero at suitable
noise intensity, although they are asymmetrical at high and
low values of a noise intensity. This change makes the oc-
currence of SR possible in the systems with asymmetry po-
tential wells. Due to this characteristic generalized potential,
the system modulated by an external field undergoes a spe-
cial response to multiplicative noise.

If a seasonal signal, A0 cos��t�, is inputted, as shown in
Eq. �4�, a time series is taken to monitor the responses of an
anti-tumor system to the seasonal signal through a numerical
method for stochastic differential equations �23�. At low val-
ues of A0 and � �i.e., A0�1,��1�, the symmetry of two
potential wells decides the synchronization of the probability

FIG. 1. Generalized potential for different intensities of multi-
plicative noise M =0.01 �solid�, 0.20 �dashed�, and 0.76 �dashed-
dotted�. The remaining parameters are r0=1.0, �=2.0, and
K=10.0.
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skips between two states. In the presence of additive noise,
the relationship between the signal-to-noise ratio �SNR1� and
the height of the potential barrier ��Uk� is given by
SNR1=4�Ark /D and rk=Nk exp�−2�Uk /D�, in which Nk, A,
and D are an independent constant, the external field ampli-
tude, and the additive noise intensity, respectively �16�. This
relationship indicates that the height of the potential barrier
affects the existence of SR. In the absence of the additive
noise, however, the above formulas of the traditional theory

of SR are not suitable for this pure multiplicative noise prob-
lem. Here the symmetry of the potential has the main effects
on the synchronized hopping between the two states, i.e., the
existence of SR is determined by the differences of the po-
tential wells instead of the height of the potential barrier.
Accordingly, for the sake of simplicity, we have proposed an
approximate substitute �R1� for the SNR, which has the same

FIG. 2. Dependence of the differences of two potential wells on
the multiplicative noise intensities. The parameters are the same as
for Fig. 1.

FIG. 3. Time evolution of the populations of tumor cells for
different noise levels �a� M =0.80, �b� M =0.20, and �c� M =0.02.
The values of the remaining parameters are the same as for Fig. 1
and A0=0.14, �=0.012.

FIG. 4. Corresponding power spectral intensity of Fig. 3 for
different parameters �a� M =0.80, �b� M =0.20, and �c� M =0.02.
The remaining parameters are the same as for Fig. 3.

FIG. 5. Effects of multiplicative noise on SNR and R1. The solid
line corresponds to the analytical estimations in Eq. �9� for N0

=24. The circles are obtained from numerical calculations.
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form as that of SNR1 mentioned above and is simply written
as

R1 = N0 exp�− �U

M
� , �9�

where N0 is a nondimensional proportional coefficient.
Figure 3 shows selected time series at different multipli-

cative noise intensities, and their associated power spectral
intensities are shown in Fig. 4. For the right value of a noise
intensity, the populations of tumor cells skip back and forth
between active states and inactive states, indicating the syn-
chronous response of tumor cells to the treatments at an op-
timal fluctuation in their growth rate. The SNR is defined as
the ratio of the peak height of the power spectral intensity to
the height of the noisy background at the same frequency.
Figure 5 displays the changes of SNR and R1 with the noise
intensity. By increasing the multiplicative noise intensity, M,
the trend of the SNR closely matches that of R1. Stochastic
resonance induced by the multiplicative noise is clear and
marked with a sharp increase in SNR and R1 at M �0.22.

This stochastic resonance is apparently a pure multiplicative
type.

In conclusion, we have investigated the stochastic reso-
nance induced by pure multiplicative noise in an antitumor
system. The seasonal factor, reflecting the influence of che-
motherapy on tumor cells, is introduced into the conven-
tional tumor growth model under immune systems surveil-
lance. On the basis of the analyses of the asymmetrical
generalized potential, we have defined a parameter to substi-
tute SNR, which consists with the numerical results very
well. Our works offer a method to analyze some complex
stochastic differential equations, although they are insuffi-
cient to give an exact description of a real tumor growth.
Moreover, the synchronous response of tumor cells to che-
motherapy is one of the novel findings. We expect that these
analyses and numerical findings will stimulate theoretical
and experimental works to verify pure SR in real anti-tumor
systems with seasonal treatments.
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